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the strong coupling limit a bound on a(0) which grows 
with the square root of g2. We now wish to argue that 
this behavior for large g2 is in fact plausible for the true 
a(0) and that our bound is therefore a good one, apart 
from constant factors, in the limit of large g2. 

We consider the analogy to the Yukawa potential 
Here the effective potential, including the centrifugal 
barrier term, is 

Feff- ~ (\/r)e~^+la(a+l)/r2~]. 

For fixed binding energy the ratio a(a+l)/X clearly 
cannot increase indefinitely as X—><» because Ven 
would then eventually become repulsive for all values 
of r and could not maintain a fixed bound state. Simi­
larly o:(a+l)/X cannot decrease indefinitely towards 
zero as X—-»<*> because Veu would then grow more and 
more attractive over an increasingly large range of r. 
In fact it is easy to conclude that, in order for a fixed 

1. INTRODUCTION 

IN a previous paper1 we have formulated a scheme for 
calculating three-body scattering amplitudes which 

generalizes the well-known impulse approximation by 
taking into account the constraints imposed by unitar-
ity; effectively, one has summed an infinite set of dia­
grams of the impulse approximation type. A generalized 
N/D procedure was employed, in a model in which the 
incident particle interacts with only one of the target 
particles. An alternative to the N/D procedure which is 
in fact much more convenient and direct, particularly 
when none of the two-body potentials are ignored, will 
be described here. We again obtain amplitudes which 
satisfy a generalized unitarity relation which, however, 
can be derived without reliance on the multiple scat­
tering expansions employed in Ref. 1. In fact, in Sec. 2, 
we derive the exact integral equations whose iterations 

* Supported by the National Science Foundation. 
1 L. Rosenberg, Phys. Rev. 131, 874 (1963). 

bound state to be maintained, it is necessary that 

a(a+l) 1 
l im . = __, 0=2.7183-••. 

This corresponds to the situation where the two zeros 
of Feff approach each other as X—><*>, while the depth 
of the potential between them grows indefinitely. This 
property is quite general14: for any attractive potential 
that is less singular than r~2 at the origin and that falls 
off more rapidly than r~2 at infinity, a(X) must satisfy 

a (a+ l ) 
l im == const> 0, 
X-oo X 

the constant depending on the shape of the potential. 
14 This has been noted independently by R. Blankenbecler 

(private communication). 

give rise to the multiple scattering expansions. These 
integral equations are essentially the Lippmann-
Schwinger equations recast, with the aid of some oper­
ator algebra, into a form which involves the two-body 
T operator, rather than the two-body potential. Such a 
reformulation is particularly desirable in the light of the 
observation2 that the ordinary Born expansion of the 
three-body amplitudes in powers of the two-body po­
tentials is essentially useless as a calculational tool. 
Similar ^-operator integral equations were obtained 
earlier by Faddeev.3 In the form given here they lend 

2 R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121, 319 
(1961). 

3 L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960) 
[English trans}.: Soviet Phys.—JETP 12, 1014 (1961)]. These 
equations are highly coupled; they take the form of matrix inetgral 
equations. A more compact form, applicable to many-particle 
scattering problems, has been developed by S. Weinberg, Phys. 
Rev. 133, B232 (1964), although the two-body potential still ap­
pears in Weinberg's formulation. Our equations, restricted here to 
the three-body case, combine the advantages of being uncoupled 
and potential-independent. 
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With the aid of some operator algebra the Lippmann-Schwinger integral equations for three-body tran­
sition amplitudes are recast in a form which involves two-body transition operators rather than two-body 
potentials. These equations, which are uncoupled and apply to all channels, are ideally suited to be the basis 
for approximation schemes, of the impulse approximation type, which have the distinctive feature of pre­
serving unitarity. Two such approximations are described. With either of these as the leading term, a method 
of successive approximations is developed which yields an expansion for the exact amplitude whose con­
vergence properties are expected to be considerably improved over the usual Born and multiple-scattering ex­
pansions. At high energies and low momentum transfers we obtain a unitary version of the strip approxima­
tion. Here the integral equation is quite tractable and represents the nondispersion-theoretic analog of multi-
particle N/D techniques which have been applied recently to N-N and w-N reactions. 
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themselves rather more directly to the unitary approxi­
mation techniques which we wish to develop. 

The generalization, to the case where none of the 
potentials vanish, of the unitary impulse approximation 
of Ref. 1 is formulated in Sec. 3A. The idea is simply to 
assume that the pair of particles which form the target 
bound system interact in intermediate and final states 
only when they are bound. It will be recalled that in 
the ordinary impulse approximation all interactions 
between the pair in intermediate states are ignored. 
Formally, our result is achieved by approximating, 
and thereby considerably simplifying, the propagator 
which appears in the kernel of the integral equation. 
It is shown directly, without recourse to N/D pro­
cedures, that unitarity is preserved (even when the 
ordinary impulse approximation violates unitarity). 
In another closely related method (described in Sec. 
3B) the propagators are replaced by the forms appropri­
ate for a particular type of separable potential. The 
unitarity of the resultant amplitudes is automatic since 
the separable potentials are Hermitian. The integral 
equations are particularly simple when the three 
particles are identical. 

These methods share the attractive feature that the 
approximate integral equations are of the two-body 
Lippmann-Schwinger type (with a complex, energy-
dependent potential). Furthermore, since the exact 
integral equations are known, it is possible to formulate 
corrections in a systematic way. In particular, we 
present a method of successive approximations in which 
the amplitude in the (n— l)th stage serves as an optical 
potential, in a two-body Lippmann-Schwinger equation, 
for the amplitude in the ^th stage. This iterative tech­
nique, whose convergence properties have not been 
studied, is based on a method developed by Feinberg 
and Pais4 for use in a different problem. 

Our approximate integral equations admit of further 
simplifications, giving rise to a unitary version of the 
strip approximation,5 in the domain of high energies 
and low momentum transfers. In Sec. 3C we point out 
the close relation between this result and the theory 
developed by Baker and Blankenbecler6 to take into 
account inelastic effects in peripheral collision models. 

2. DERIVATION OF THE INTEGRAL EQUATIONS 

We consider a model in which three distinguishable, 
spinless particles interact by means of two-body local, 
central potentials. The T-matrix elements of interest 

* G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963). 
5 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961). 
• M. Baker and R. Blankenbecler, Phys. Rev. 128, 415 (1962). 

The similarity between the Baker-Blankenbecler theory and our 
unitary impulse approximation is not surprising since both are 
suggested by the multiparticle N/D relations. It is our purpose 
here to point out that the use of linear integral equations can serve 
as a useful alternative to the N/D relations as a starting point for 
generating approximation techniques. This point of view has also 
been emphasized recently by R. D. Amado (see Ref. 12). 

are given by the familiar expressions 

a, P=a, b, c, o 
where 

(ff-£)¥a<±>= (K+Vi2+Vlz+V2Z-E)*a^ = 0, (2.2) 

(H-E-Va)$a=0. (2.3) 

K is the center-of-mass kinetic-energy operator and we 
have introduced the notation 

Va=V12+Vu, Vb=V18+V2,y 

F c =Fi 2 +F 2 3 , Vo=Vu+V13+V2*. 

Channels a, b, and c are "two-body" channels; ^ c o r ­
responds to a state in which particles 2 and 3 are bound, 
while the relative motion of the center of mass of the 
bound system and particle 1 is described by a plane 
wave. Similar definitions hold for <£& and <£c, with ap­
propriate permutations of particle labels according to 
Eqs. (2.4). All three particles are unbound and non-
interacting in channel o. We also define a channel d, 
with Vd= Va, in which the three particles are unbound 
although particles 2 and 3 interact through F23. The 
(somewhat unconventional) retention of this potential 
in the definition of the three-body channel wave func­
tion $d will be convenient in the following. It has the 
consequence that Tda differs from the full scattering amp­
litude T00, for three particles free in initial and final 
states, by a "disconnected" part as shown explicitly 
below.7 

The two-body transition operators Ty are defined by 

ZV±> (£) = Va+ Vifio^ CE)7V ±> (E) 

-Vv+Vifi^WVij, (2.5) 
where 

G0^(E)= (Ezkiv-K)-1, (2.6) 

<V±>(E) = (E±iv-K- Vi3)~\ (2.7) 

The relation 
Gij=Go~\~G<>TijG0 (2.8) 

will be useful in the following. It will be convenient to 
introduce, in addition, the operators Ga, defined, e.g., 
by means of eigenfunction expansions which we indicate 
schematically as 

Here the sum over states, symbolized by Sa, is an ap­
propriately weighted integration over momentum vari-

7 We should, for completeness, display the boundary conditions 
satisfied by the wave functions ^0 ( ± ) . In the interest of brevity we 
do not do so here (see, however, Ref. 13). Information concerning 
the momentum variables needed to complete the definition of the 
channel wave functions is assumed to be absorbed in the channel 
indices. We shall at times write <£«(») to make this more explicit. 



ables for the state <£«. We have, accordingly, the 
relation 

Gn=Ga+Gd. (2.10) 

I t will be helpful in the following to have at our 
disposal an operator identity which has previously ap­
peared (in perhaps slightly altered form) in the litera­
ture.8 A brief derivation is included here for the reader's 
convenience. Consider a scattering system whose state 
vector ^ ( ± ) satisfies the Lippmann-Schwinger equation 

^(±) = $ + G ( ± ) ( £ ) 7 ^ ( ± ) , (2.11) 
with 

G&(E)=(E±iri-H+V)-1, (2.12) 
and 

(H-V-E)$=0 (2.13) 
so that 

(H-E)*^ = 0. (2.14) 

A transition operator T and a wave operator 0 may be 
defined such that 

T$^V* (2.15) 
and 

¥ = Q $ . (2.16) 

With the aid of Eq. (2.11), the relations 

T=V+VGT, (2.17) 

T=Vtt, (2.18) 

tt=l+GT, (2.19) 

are easily verified. Now consider two different systems, 
distinguished by the subscripts A and B. The identity 

TAW = TAM-TB^-)£QA-GA^TA^-1-] 

+l^^~TB
n-)GB^-^-l']TA(+) (2.20) 

obviously holds since both bracketed terms vanish. 
The identity we seek is obtained by rewriting Eq. 
(2.20) in the form 

7 V + ) = ZV M+Oatc-) (VA~ F ^ ) O A ( + ) 

+ TB^~^GAW-GB^-^TA^ , (2.21) 

where use has been made of Eq. (2.18). In the following 
we assume that 

V*=V, GK-) = G<+K 

As a first application of Eq. (2.21) we return to our 
model problem and make the choices 

(2.22) 

We find immediately that 

r c + ) = r 2 3 < ^ + f e t ^ ( F i 2 + F i 3 ) f i ( + ) , (2.23) 

T H R E E - B O D Y S C A T T E R I N G T H E O R Y 

Here 
d(f)d(i) = ( ^ ( / ) H ^ A ( i ) ( + ) ) 
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(2.25) 

is evidently the difference between the true amplitude 
and a disconnected part which describes the process in 
which particles 2 and 3 interact and particle 1 is free. 
No such disconnected part can exist, for energy con­
serving reactions, if particles 2 and 3 are bound in 
initial or final states so that9 

r « o = ( * « < - W d < + > ) . 

(2.26) 

(2.27) 

We proceed by defining operators f aa ( : t ) and Taa
(±) 

according to 

raa^=va+vaG2^raa^ 
and 

(2.28) 

(2.29) 

(2.30) 

VA=Vu+Vu+Vn, 
Vs=V2z, 
GA—GB — G0. 

TA=T 

TB — T<L% 

raa
(±)=Va+VaG0^raa^K 

If, in Eq. (2.21), we choose 

VA=VI2+VM, TA^TUU, GA = G2Z, 

VB— F 1 2 + F 1 3 , TB — Ta<n GB=G0, 

we obtain 

^aa — T«a+ Taa (^23 ~" G0) ^aa 

= Taa-\-TaaG0T23Go<raa. (2.31) 

The significance of the operator Taa lies in the relation 

Taa^Vt&a, (2.32) 

which follows from Eq. (2.28) and the Lippmann-
Schwinger equation for ^a. Therefore, the elastic 
amplitude can be written as 

Taa=($a,raa<S>a). (2.33) 

I t is seen from Eqs. (2.25)-(2.27) and Eq. (2.32) that 
the inelastic amplitudes can also be represented in 
terms of ?"aa as 

Toa= ($/-\raa$a), (2.34) 

Tao= ($a,raa$d^), (2.35) 

Tdd=(*d<r-\raa*dM). (2.36) 

In obtaining Eq. (2.35) we have made use of the re­
ciprocity relation <Taa

{~)=z ^aa{+) which follows directly 
from Eq. (2.21) with A = B. Similar reciprocity rela­
tions hold for the operators raa and Ty. Consequently, 
Eq. (2.31) may be written as 

J- aa Taa\ -* aaSJo-L 23^jro'7"ao« (2.37) 

so that 
T0(f)o(i) = (<£<>(/),^$o(i)) 

= &oVhT2&o{i))+Tdv)dii). (2.24) 
8 See, e.g., H. A. Bethe, B. H. Brandow, and A. G. Petschek, 

Phys. Rev. 129, 225 (1963). 

Our task now is to replace Eq. (2.29) by a set of 
equations which determine raa but which do not involve 
the potentials. Toward this end we introduce the 
decomposition 

T a a
: =T2+T3 , (2.38) 

9 Equation (2.26) (along with its time-reversed counterpart) 
was derived by K. M. Watson, Phys. Rev. 88, 1163 (1952), as the 
basis for his final-state interaction theory. 
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with 
T2=Vu+V1tG0Taa, (2.39) 

Tz=Vi2+VuG0Taa. (2.40) 

I t is easy to see that Eqs. (2.39) and (2.40) may be 
replaced by 

T2z=Tu+TldG0T3, (2.41) 

n=T12+T12G0r2. (2.42) 

Thus, Eq. (2.41) may be written as 

T2— F13+ Vl%G0T\%-\- ^13^oT3+ VizG0TiZG0Tz 
= V±z+ VuG0 (Tn+TizG0T3+Tz) 

= V1Z+VUG0(T2+TZ). (2.43) 

In a similar manner the expressions for r3 in Eqs. (2.40) 
and (2.42) can be shown to be equivalent. The equations 
can be simplified by a transformation to uncoupled form. 
By combining Eqs. (2.41) and (2.42) we find that 

r2=f2(l+G0Ti2), (2.44) 

T 3 =?3( l+G o r 1 3 ) , (2.45) 

where f2 and f3 satisfy 

T2 = Tu+ TuG0T12G0f2 , (2.46) 

h=T12+T12G0TidG0h. (2.47) 

In summary, Eqs. (2.46) and (2.47) are to be solved for 
f2 and f3, from which raa can be constructed; Eq. (2.31) 
is then to be solved for Taa. A knowledge of Taa leads 
not only to the elastic and break-up amplitudes [[see 
Eqs. (2.33)-(2.36)] but to the rearrangement ampli­
tudes as well, as is shown below. I t should be noted 
that the kernels in Eqs. (2.31), (2.46), and (2.47) con­
tain no disconnected parts so that Fredholm techniques 
may be applied. This point is discussed in detail by 
Weinberg3, who devised a different method for separat­
ing off the disconnected parts. 

The expression of the scattering operator Taa as the 
sum of two parts, as in Eq. (2.31) has a simple interpre­
tation. The operator raa represents the sum of all dis­
tinct multiple scattering events, each described by 
either Ti2 or Tu, in which the incident particle strikes 
one target particle, then the other, and then the first 
again, etc. The second part represents the additional 
terms (sometimes called "potential" corrections in 
discussions of the impulse approximation) which take 
into account virtual collisions between the target 
particles themselves. This representation appears to be 
an ideal starting point in a problem in which the impulse 
approximation (raa replaced by Tu+Tu) represents a 
fairly good first approximation and one is looking for 
corrections to it. 

We now turn to a discussion of rearrangement colli­
sions and show that as a generalization of the preceding 
discussion the amplitude Tap, for any pair of entrance 
and exit channels, can be represented as 

Ta^($a,ra&e). (2.48) 

Here the operators Tap can be obtained as the solutions 
of uncoupled linear integral equations in which the 
operators Ty, rather than the two-body potentials, 
appear; the wave functions <£a are obtained by solving 
two-body problems. To see how this comes about we 
first set a=a and /3=b. According to Eq. (2.48) an 
operator Tab must be found such that 

rab$i>=Va*i>. (2.49) 

We look for Tab in the form 

rab= V12+R= Vl2+R2+Rd, (2.50) 

where R2 and R% are to satisfy 

R&b=Vn*b, (2.51) 

(V12+Rs)$b=V12*b. (2.52) 

If, in addition, we introduce the operator Ri such that 

R&b=V*&b, (2.53) 

then the integral equation 

*b=$b+G12(Vu+Vn)*b (2.54) 

leads to the relations 

Rl= Vn+V2ZG12(Ri+R2), (2.55) 

R2= Vlz+ VuGl2{Ri+R2), (2.56) 

Rz^Vx&niRi+R*),. (2.57) 

from which the Ri may be determined. I t is easily verified 
that Eqs. (2.55)-(2.57) can be written in the equivalent 
form 

* i = T2Z+T2,G0(R2+Rs), (2.58) 

R2-Tu+TuGo(Ri+Rz)J (2.59) 

Rt=T12G0(R1+R2). (2.60) 

If, for example, one replaces T2z in Eq. (2.58) by its form 
given in Eq. (2.5) the resultant expression for Ri can, 
by reapplication of Eq. (2.58) itself, and by use of 
Eqs. (2.60) and (2.8), be reduced to that given in Eq. 
(2.55). The algebraic details are omitted here. I t might 
be thought that our expression for Tab is still not poten­
tial independent due to the appearance of V\2 in Eq. 
(2.50). However, when the appropriate matrix element 
is formed, explicit dependence on the potential can be 
eliminated since the Born term 

($a,V12$b) 

can be expressed in terms of the two-body bound-state 
wave functions for the pairs (1,2) and (2,3) .10 By means 
of additional algebraic manipulations it is easy to show 
that Eqs. (2.58)-(2.60) imply the relations 

R2= ?2+T2G0T2Z(1+GOR) , (2.61) 

Rs=T12Goh+TzG0T2s(l+GoR). (2.62) 
10 See, e.g., Eq. (4.22) of Ref. 1. 
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Therefore, by adding Eqs. (2.61) and (2.62) we see that 
R is given implicitly by 

i ?= T-\-TaaGoT2Z-\- 7aaG<>7\%G0R , (2.63) 

with 

r^(l+T12G0)72. (2.64) 

Equations (2.31) and (2.63) may be used to verify the 
alternate form 

G0r+ (2.65) 

Since operation of R on $& is always understood, and 
since #& satisfies the eigenvalue equation 

$h(E)^G0(E)V12$b(E), (2.66) 

we may write 

raaG0Tn= TaaG0TnG0V12 (2.67) 

in Eq. (2.65). Finally, we have [recall Eq. (2.50)] 
Cr'ab—7ab-\-Cr'aaGoT2zGo7ab, (2.68) 

with 

Tab^Vl2+r. (2.69) 

We note the equivalent form 

^ab=7ab+7aaGoT2zGoTah. (2.70) 

It is clear that 2*&a should be defined as 

n « = **abtc-> (2.71) 

to ensure the relation 

( $ & , n a $ a ) - n a . (2.72) 

In fact, with the aid of Eqs. (2.71) and (2.49) the left-
hand side of Eq. (2.72) can be written as 

( T W - ^ a H (*6(-\"M>«) (2.73) 

which, according to Eq. (2.1), is just 7\a. 
Integral equations for the operators T*a/3 appropriate 

for other pairs of entrance and exit channels are easily 
deduced from the equations given above by suitable 
permutations of particle indices. Note that all the ampli­
tudes for inelastic and rearrangement collisions can be 
constructed (assuming knowledge of the <£a) once the 
elastic transition operators 5Taa have been found. 

3. UNITARY APPROXIMATIONS 

A. Unitary Impulse Approximation 

The first approximation to be discussed is a generali­
zation of the unitary impulse approximation formulated 
in Ref. 1. From the present point of view the approxi­
mation arises from a simple modification (in the spirit 
of the ordinary impulse approximation) of the propa­
gator which appears in the integral equation for the 
elastic amplitude r a o . We begin by defining a modified 
scattering operator Taa

(0) according to 

•*• aa 7aa~T~ J- aa ^JoTaa 

= 7aa+7aaGaraa«», (3.1) 

which differs from Eq. (2.31) for "Taa by the replacement 
G2z=Ga+Gd-^ Ga+Go- This corresponds to ignoring 
the interaction between particles 2 and 3 in continuum 
intermediate states, but leaving it unaltered when the 
pair is bound. This is of course just the essential feature 
of the impulse approximation, extended here to inter­
mediate states in the scattering process. As we shall 
show directly, it is this extension which allows for the 
preservation of unitarity in the set of channels {a,o}. 
(We have assumed that we are particularly interested 
in elastic and break-up reactions for entrance channel 
a. This accounts for the asymmetric appearance of 
channel a in our equations.) The approximate scattering 
amplitudes are taken as 

raa<w=(*a,rflaw*a), (3.2) 
r«0<°>=(*a,r«0<M*o), (3.3) 

r O a ( 0 ) = ( * o , r a a W # a ) , (3.4) 

r o o ( 0 ) = ( ^ , r a a ( 0 ) # o ) . (3.5) 

This is a consistent extension of our approximation 
since we have ignored the interaction of the (2,3) pair 
in continuum initial and final states as well. To com­
plete the approximation scheme we define the amplitudes 

ra« ( 0 ) =(*a ,^a« ( 0 ) #«) , (3.6) 

r a o w=($ a , r a o ^ a ) , a=6,c, (3.7) 
with raa

(0) and T5«a
(0) given by 

J- aa 7aa I •*• aa ^ra7aa j W**/ 

cf ( 0 ) _ r J_ r Q cf (0) (2 Q\ 
1 a a — i a a \ TctaS*a •*• aa • W'-V 

It will be convenient to discuss the unitarity condi­
tions in terms of the operator relations 

= E raaMZGa«->-Ga<->lraa<+>, (3.10) 
a,=a,b,c,d 

which can be obtained directly from the integral equa­
tions which define Taa. Alternatively, Eq. (3.10) can 
be inferred from the unitarity conditions for the scat­
tering amplitudes, viz., 

1 
ImjTa0= £ SyTay(n)*Ty(n)p8(E—En). (3.11) 

7T y=a,b,c,o 

The symbol ST, introduced previously in Eq. (2.9), 
represents an integration over intermediate-state mo­
mentum variables. Matrix elements of Eq. (3.10) with 
respect to the states <£« and $d give rise to "generalized" 
unitarity relations. They differ from the ordinary uni­
tarity relations of Eq. (3.11) in that branch cuts due to 
initial- and final-state interactions of particles 2 and 3 
are ignored, this being exactly compensated for by the 
use of connected amplitudes. (Generalized unitarity 
relations of a similar type have been proposed for rela-
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tivistic scattering amplitudes by Blanker) becler.11) Since 
the operators 1"a^

0) differ from the Ta$ only in the 
replacement of Ga by G0 we obtain, as the analog of 
Eq. (3.10) 

3-.s<M<+>-3-..<w<-> 

= E n«<M<->[G«<+)-G«<->]r„«><+>. (3.12) 
ct—a,b,c,o 

If we now take matrix elements of this equation with 
respect to the states $a and <£0 we find that the ampli­
tudes Tap

m satisfy the ordinary unitarity conditions, 
Eq. (3.11), for the set of channels {a,o}. If we replace 
Eq. (3.5) by 

T00™= (#o,r«a<w$.)+ ($o,T2&0), (3.13) 

i.e., if we include the disconnected part, then Eq. (3.11) 
is no longer satisfied for the inelastic amplitudes, al­
though it remains valid for the elastic amplitude 
(a=(3 = a). However, the generalized unitarity relations, 
which are formulated in terms of the connected ampli­
tude, are still satisfied for the set of entrance and exit 
channels {a,o}. 

The simplifying feature of our approximation, Eq. 
(3.1), is the presence of the operator Ga which is es­
sentially a two-body propagator; the (2,3) bound system 
behaves kinematically as a single particle. Thus, 7Jaa

(0) 

is determined by a two-body equation, of the Lipp-
mann-Schwinger type, in which raa appears as an "opti­
cal potential." Of course, we still must determine raa. 
Short of solving the integral equations for raa exactly, 
we expect that this approach will be most useful when 
multiple scattering effects are unimportant, so that 
Taa—Tu+Tis. Equation (3.1) then leads to a summa­
tion of an infinite subclass of terms which are iterations 
of the basic impulse approximation amplitude. We shall 
have more to say about approximations for raa in the 
following. 

It is interesting to observe that with the aid of a 
method proposed by Feinberg and Pais4 in connection 
with their peratization theory, the approximation de­
scribed above can be exhibited as the leading term in 
an iteration scheme to determine the exact operator 
yoa. The method, stated in the context of the present 
problem, provides a solution of the integral equation for 
'Taa in the series form 

r a o - E raa (B) . (3.14) 

The operators T*aa
(n) are obtained recursively from the 

series of integral equations 

ct (0) = = r 4_ T Q a* (0) H 1 ^ 
-L aa * aa\ ' aaS*a •*• aa y \KJ.XOJ 

n ^ l . (3.16) 
11 R. Blankenbecler, Phys. Rev. 122, 983 (1961). 

I t is a simple mat te r to verify tha t this system of 
equations provides a formal solution of Eq. (2.31), 
although the convergence properties of the series, Eq . 
(3.14), has not been investigated. Note t ha t Eq. (3.16) 
preserves the feature described earlier with regard to 
Eq. (3.1), namely, it is in the form of a two-body 
Lippmann-Schwinger equation; the inhomogeneous 
term for the nth equation can be constructed once the 
solution of the (n— l ) t h equation has been found. 

Clearly, the same method can be used to solve Eqs. 
(2.46) and (2.47) to determine r a a . If no bound state 
exists for the (1,3) pair, say, then the Feinberg-Pais 
procedure applied to Eq. (2.47) reduces to the ordinary 
multiple scattering expansion 

r 3 = T12+T12G0T13G0T12+«... (3.17) 

It is, of course, just the presence of bound states which 
casts doubt on the validity of this type of expansion, 
and which would favor the use of the integral equations 
we have described to sum infinite subclasses of terms. 

B. Separable Potential Model 

As an alternative to the above procedure we now 
describe an approximation scheme based on the intro­
duction of separable potentials. Let X23 represent the 
bound-state wave function for the (2,3) pair, with 
eigenenergy — €23. (For simplicity we asume tha t only 
one bound state exists.) We consider the separable 
potential 

fl23(S> = V2Z I X23)(X23 I V2z/(X2Z I *>23 I X23) , (3.18) 

where the use of a lower case v is meant to indicate 
t ha t v2% operates in a space of two particles while F23 
operates in a three-particle space. The transition oper­
ator / 2 3 ( s ) is easily constructed. Since we are concerned 
with a three-body problem, we state the result in terms 
of the corresponding operator T23 ( s ) . We find tha t 

ZV->(E) = S a 7 2 8 |*aoo> 

N(E-En-e2z) 
X —— <*.(•) I F „ , (3.19) 

E—En 
where 

r dk 

J (2*)3 

S2(k) , N 

X . (3 20) 

C(* 2 /2/*«)« I-*I(»V2|*28)« ,+ 623] 

0*23 is the reduced mass of the two-body system) and 

g(k)=<k|xi2s|x28>- (3.21) 
We note the relation 

# ( - € 2 8 ) = 1, (3.22) 

which is easily deduced from Eqs. (3.20) and (3.21) 
along with the normalization condition (xlx)— 1-

file:///kj.xoj
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We now replace T^ in Eq. (2.31) by T2z
is\ giving 

rise to an approximate transition operator ^Taa
(s) deter­

mined by 
raa^ = raa+raaGa^raa^, (3.23) 

with GJs) denned by 

Ga(8) = G02Vs>Go. (3.24) 

Equation (3.23) shares the attractive feature of our 
previous approximation, Eq. (3.1), in that GJs) behaves 
kinematically as a two-body propagator. In fact, if we 
define the state vector 

$ a ( n ) ( ± ) ( £ ) = G o ( ± ) ( £ ) F 2 ^ a ( » ) ( £ n ) , ( 3 . 2 5 ) 

which satisfies the "on-shell" relation 

* a ( » ) C ± > ( £ n ) = * a ( n ) ( £ » ) , ( 3 . 2 6 ) 

we obtain from Eqs. (3.19) and (3.24) the expression 

G a W ( £ ) = S a | * a ( n ) ( + ) ( S ) > 

N(E-En- €23) „ 
X ^T^ <*a(n)M(£)|, (3.27) 

E— En 

which may be compared with Ga as given by Eq. (2.9). 
It might be anticipated that at large scattering energies 
the operators Taa

(o) and T^*0 should not differ appreci­
ably. In fact, to the extent that we need retain only 
those contributions to the integrals in Eqs. (2.9) and 
(3.27) for which En~E we see that by virtue of Eqs. 
(3.22) and (3.26) the difference between Ga

{s) and Ga 

vanishes. It is clear that since the separable potential 
F2300 is Hermitian the unitarity relations will be pre­
served. We also note that the Feinberg-Pais iterative 
procedure can be formulated just as in Eqs. (3.14)-
(3.16), with the replacement of Ga by Ga

(s). As a final 
remark let us suppose that Vn and F13 can each support 
a bound state. Then Eqs. (2.46)-(2.47) can be replaced 
by 

*2M=TlzM+TltMGhMW\ (3.28) 

h^ = T12^+Tn
(s)Gc^f^, (3.29) 

so that an approximation to the operator raa can be 
constructed by solving two-body integral equations with 
relatively simple inhomogeneous terms. When all three 
particles are identical, the integral equations become 
particularly simple in form; they in fact reproduce a 
model introduced recently by Amado,12 as we have 
shown.13 The use of separable potentials to simplify 
the three-body equations has been discussed previously 
by Mitra14 from a different point of view. 

C. Unitary Strip Approximation 

A study of the three-body problem in the approach 
described here should be of some value even when the 

12 R. D. Amado, Phys. Rev. 132, 485 (1963). 
13 L. Rosenberg, Phys. Rev. 134, B937 (1964). 
14 A. N. Mitra, Nucl. Phys. 32, 529 (1962). 
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FIG. 1. Leading graphs in the diagrammatic expansions of the 
elastic and break-up amplitudes. Solid lines refer to the heavy 
particles and dashed lines to the light particle. The double line 
(one solid, one dashed) represents the bound two-body system. 

potential picture breaks down. The reason for this lies 
in the formal similarity of the integral equations derived 
here for the potential model and those approximate 
integral equations which can be written down on the 
basis of unitarity and analyticity considerations in the 
relativistic theory. In the latter category we have in 
mind, in particular, the multiparticle N/D relations 
discussed by Blankenbecler11 and others in which a 
proper treatment is sought for the effects of the coupling 
of elastic and inelastic channels; this coupling must 
exist by virtue of the unitarity conditions. In order to 
emphasize this similarity we will now show that by 
taking the Fourier-Bessel transform of an approximate 
version of the integral equations obtained above we are 
led to a tractable set of equations which can be com­
pared with a set derived earlier by Baker and Blanken­
becler.6 These authors used the N/D method to study 
proton-proton reactions in the peripheral collision model. 
It will be seen that the two sets are formally identical 
once allowance is made for the difference in kinematics, 
and the correspondence between relativistic form factors 
and nonrelativistic bound-state wave functions is 
recognized.15 

Let us consider a case where particles 1 and 2 are 
identical, of mass M, and particle 3 has mass w, with 
m<M. The solution of the integral equation for the 
elastic amplitude [Vhich is actually a sum of direct 
(Taa) and exchange (Tba) terms] can be interpreted 
as the sum of an infinite set of graphs, the first few of 

15 R. Blankenbecler, M. Goldberger, and F. Halpern, Nucl. 
Phys. 12, 647 (1959); R. Blankenbecler and L. F. Cook, Phys. 
Rev. 119, 1745 (I960). 
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which are pictured in Fig. 1. The leading graphs for the 
inelastic amplitude are also shown. We wish to develop 
an approximation scheme which will be valid in the 
domain of high-energy and low-momentum transfer. 
In this case a useful criterion for the relative importance 
of different graphs is the nearness to the physical region 
of singularities of the amplitude in the complex t plane, 
where t is the square of the momentum transfer. We 
assume that the amplitude has a branch cut on the 
negative /axis running from t— — oo to a threshold value 
to, and that other singularities in t are either not present 
or have little influence on the physical amplitude. Let 
the threshold values for graphs (b) and (c) in Fig. 1 be 
denoted by UM and tom, respectively. We assume the 
binding energy, e, of the target system to be small 
enough so that these threshold values are of the 
"anomalous" type, depending on e and not on the 
potential range. (This is the case for the deuteron, e.g.) 
Using methods described previously16 we find [here our 
study is based on Eq. (3.35)] that 

tom/toM=(m/M¥«i. (3.30) 

Consequently, we omit from our sum of graphs all those 
which involve heavy particle transfer, as in Fig. 1(b). 
Furthermore, the Born term, Fig. 1(a), is dominated 
by singularities in the exchange momentum transfer 
variable u= {ki~\-[_M/ (ni+M^kf}2 close to the physi­
cal threshold UQ=0. In the domain of interest, namely, 
k j ~ k / and k%^>.e, u will be large. We therefore omit 
this graph (and iterations of it) from our sum; the 
genera] term in this diagrammatic expansion will in the 
form of a chain, each link of which is of the type shown 
in Fig. 1 (c). We now make the additional approximation 
of replacing the propagator G0T2ZG0 by Ga in the integral 
equation which sums these diagrams. This approxima­
tion can also by justified by the "nearness of singulari­
ties" argument. Because of its dependence on the 
bound-state wave function, the propagator Ga intro­
duces the nearby "anomalous" threshold singularities 
mentioned above; the neglected part of the propagator 
is responsible for more distant singularities. Our use of 
dispersion theory is confined to the above qualitative 
considerations (the strip approximation). 

The off-the-energy-shell elastic amplitude is denoted 
by jP22(k/,k»; s). For convenience in this problem, where 
identical particles are present, we depart from our 
earlier channel notation. Here the index 2 refers to the 
channel in which one of the heavy particles is free and 
the other bound, while the index 3 will refer to the 
channel in which all three particles are free. The 
momenta k* and k/ refer to the heavy particle in initial 
and final states, respectively, while s is related to the 
total energy E according to 

(W/2n)s-e=E, (3.31) 
with 

/x= (m+M)/(m+2M). (3.32) 
16 L. Rosenberg, Phys. Rev. 129, 968 (1963). 

We have the on-shell relation 

[F(k,,k,; *)]*«W-.=/&0 > (3-33) 
where / = (k/—k*)2 and f(s,t) is the physical elastic-
scattering amplitude. According to our simplifying 
assumptions the integral equation for F22 takes the form 

r dk 
F22(kf,ki;s) = F22V(kfyki;s)+ 

J (2TT)3 

1 
XF2 2

( 1 )(k / ,k; s) F22(k,k{; s). (3.34) 
k2—s—it] 

Here F22
a\ the impulse approximation, corresponds to 

Fig. 1 (c) and is given by 

F22Vfafr;s) 
1 /2/A r dk / M \ / M \ 

= ( —) / x( h+k)x[ kH-k) 
4:T\h2/J (2TT)3 \m+M J \m+M I 

{ M M h2 \ 
X« k , + k, h+ k ; E k2 , (3.35) 

\ m+M m+M 2\x J 

where x(k) is the bound-state wave function in mo­
mentum space and /(k,k r; z) is related to the two-body 
t operator by 

(k\t(z)\k') = t(k,k';z). (3.36) 

Once the elastic amplitude is determined the break-up 
amplitude may be obtained from the formula 

FZ2(kf,k/;ki',s) 

r dk 
= Fs2V(kf,k/;h;s)+ / -—FZ2V(kf,k/;k;s) 

J (2TT)3 

1 
X F22(k,k;;s), (3.37) 

k2—s—irj 

where F$2
a) corresponds to the impulse approximation 

of Fig. 1 (e) and takes the form 

F^(kf)k/;ki;s) 

1 
= (2fx/h2)x(Wm+M)ki+k/) 

47T 

X^(k /+ (M/m+M)k/} k<+ (M/m+M)k/; 

E-{h2/2ix)k/2). (3.38) 

The time-reversed amplitude is given by 

F23(k/;k;,k/;s) 

r dk 
= ft.<1>(k/;k,,k/;*)+ / ^22(k/,k;s) 

J (2TT)3 

1 
X F23^(k;khk/;s). (3.39) 

k2—s—irj 
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Finally, the fully connected part of the amplitude 
describing the collision in which three particles are free 
in initial and final states is given by 

F a 8 C ( k / , k / ; M / ; j ) = 
• / (2*)' 

-F32
(1)(k/,k/;k;*) 

X -
z—S—ir) 

-F2Z(k;ki}k/;s). (3.40) 

At this point it is possible to introduce additional 
simplifying approximations which bring our results in 
correspondence with the Baker-Blankenbecler theory. 
We observe that alterations of the two-body propagator 
which preserve its imaginary part will also preserve the 
unitarity property of the amplitudes. Furthermore, one 
might expect that at high energies it is the imaginary 
part which is most important. We therefore replace Eq. 
(3.34) by 

(3.41) 

(3.42) 

F22(kf,ki;s) = F22V(kf,ki;s) 

+I(s{ fdQkF22V(kf,k', s)F22(k,ki; s)~\ 2 

with 
ImI(s) = P2(s) = s1^7r. 

Equations (3.37), (3.39), and (3.40) can be modified in 
a similar way. If we wished complete correspondence 
with the Baker-Blankenbecler theory we would at­
tempt to write 

rds' P2{s') 
/ ( * ) = / — . (3.43) 

JO TT S—S 

While this form is finite for relativistic kinematics, it 
diverges in our case. We therefore introduce a zero-
energy subtraction and write 

I(s) -f 
ds' P 2 ( / ) 

IT (S'-S)S' 
= ip2(s), (3.44) 

which corresponds simply to the replacement of the two-
body propagator Ga by its imaginary (on-shell) part. 
At this stage we note that use of the propagator Ga

(s) 

of Sec. 3B rather than Ga would have led to the same 
result since, as we pointed out above, the two propa­

gators differ only in the manner in which the amplitudes 
are continued off the energy shell. 

The final step is the introduction of the Fourier-Bessel 
representation. We write6 

Fij^MijisJiVij), (3.45) 

where the z># are the remaining scalar variables needed 
to specify the amplitude completely, and assume that 
the representation 

Jo 
WMbfl^HifabiVid (3.46) 

is valid. The Fourier-Bessel transforms of the ampli­
tudes Fija) are denoted by Bij(s,b;Vij). If we employ 
the high-energy approximation of Blankenbecler and 
Goldberger,17 our integral equations, in the new repre­
sentation, take the simple form 

H22(s,b) = B22(s,b)/Zl-I(s)B22(s,b)l, (3.47) 

Hs2(s,b; vM) = B H W ; ^2) [ l+ / (* )#22 (*,&)], (3.48) 

H2Z(s,b; Vn) = ll+H22(s,b)I(s)2Bn(s,b; v23), (3.49) 

HSz(s,b; vzzy=B32(s,b; vZ2)I(s)H2Z(s,b; v23), (3.50) 

which are identical in form with those proposed in Ref. 
6. In our model the input amplitudes Bij are given ex­
plicitly, in terms of the ordinary impulse approximation. 

If particles 1 and 2 were lighter than particle 3, the 
arguments outlined above, in which heavy particle 
transfers are ignored, would again lead to a unitary 
strip approximation which sums all iterations of the 
leading graph shown in Fig. 1(b). (In this case the solid 
line would refer to the light particle and the dashed line 
to the heavy particle.) By making use of the above-
mentioned correspondence between bound-state wave 
functions and relativistic vertex functions,15 this scheme 
could be applied to peripheral interactions (or interac­
tions in the higher partial waves) for the pion-nucleon 
system in which only two- and three-body intermediate 
states are retained. We would then obtain an alternative 
to the dispersion-theoretic approaches to this problem 
which have already been attempted.18 

17 See Eq. (3.9) in R. Blankenbecler and M. L. Goldberger, 
Phys. Rev. 126, 766 (1962). 

18 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); J. S. 
Ball, W. R. Frazer, and M. Nauenberg, ibid. 128, 478 (1962). 


